Yazar "Bayoumi, Ehab H. E." seçeneğine göre listele
Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Decentralized Robust Power System Stabilization Using Ellipsoid-Based Sliding Mode Control(MDPI, 2024) Bayoumi, Ehab H. E.; Soliman, Hisham M.; El-Sheikhi, Farag A.Power systems are naturally prone to numerous uncertainties. Power system functioning is inherently unpredictable, which makes the networks susceptible to instability. Rotor-angle instability is a critical problem that, if not effectively resolved, may result in a series of failures and perhaps cause blackouts (collapse). The issue of state feedback sliding mode control (SMC) for the excitation system is addressed in this work. Control is decentralized by splitting the global system into several subsystems. The effect of the rest of the system on a particular subsystem is considered a disturbance. The next step is to build the state feedback controller with the disturbance attenuation level in mind to guarantee the asymptotic stability of the closed-loop system. The algorithm for SMC design is introduced. It is predicated on choosing the sliding surface correctly using the invariant ellipsoid approach. According to the control architecture, the system motion in the sliding mode is guaranteed to only be minorly affected by mismatched disturbances in power systems. Furthermore, the proposed controllers are expressed in terms of Linear Matrix Inequalities (LMIs) using the Lyapunov theory. Lastly, an IEEE test system is used to illustrate how successful the suggested approach is.Öğe Decentralized Sensor Fault-Tolerant Control of DC Microgrids Using the Attracting Ellipsoid Method(MDPI, 2023) Soliman, Hisham M.; Bayoumi, Ehab H. E.; El-Sheikhi, Farag A.; De Santis, MicheleSystem stability deterioration in microgrids commonly occurs due to unpredictable faults and equipment malfunctions. Recently, robust control techniques have been used in microgrid systems to address these difficulties. In this paper, for DC-islanded microgrids that have sensors faults, a new passive fault-tolerant control strategy is developed. The suggested approach can be used to maintain system stability in the presence of flaws, such as faulty actuators and sensors, as well as component failures. The suggested control is effective when the fault is never recognized (or when the fault is not being precisely known, and some ambiguity in the fault may be interpreted as uncertainty in the system's dynamics following the fault). The design is built around a derived sufficient condition in the context of linear matrix inequalities (LMIs) and the attractive ellipsoid technique. The ellipsoidal stabilization idea is to bring the state trajectories into a small region including the origin (an ellipsoid with minimum volume) and the trajectories will not leave the ellipsoid for the future time. Finally, computational studies on a DC microgrid system are carried out to assess the effectiveness of the proposed fault-tolerant control approach. When compared with previous studies, the simulation results demonstrate that the proposed control technique can significantly enhance the reliability and efficiency of DC microgrid systems.Öğe Ellipsoidal Design of Robust Stabilization for Markov Jump Power Systems under Normal and Contingency Conditions(MDPI, 2022) Soliman, Hisham M.; El-Sheikhi, Farag A.; Bayoumi, Ehab H. E.; De Santis, MicheleThe essential prerequisites for secure customer service are power system stability and reliability. This work shows how to construct a robust switching control for studying power system load changes using an invariant ellipsoid method. Furthermore, the suggested control ensures stability when the system is subjected to random stochastic external disturbances, and functions randomly in two conditions: normal and contingency. The extreme (least) reliability state is chosen as the most severe scenario (corresponding to a transmission line outage). As a two-state Markov random chain, the transition probabilities are utilized to simulate the switching between normal and contingency modes (or processes). To characterize the dynamics of the studied system, a stochastic mathematical model is developed. The effect of stochastic disturbances and random normal/contingency operations is taken into account during the design stage. For a stochastic power system, a novel excitation control is designed. The attractive ellipsoid approach and linear matrix inequalities (LMIs) optimization are used to build the best two-controller gains. Therefore, the proposed modeling/design technique can be employed for the power system under load changes, stochastic topological changes, and random disturbances. Finally, the system's random dynamics simulation indicates the effectiveness of the designed control law.Öğe Ellipsoidal-Set Design of the Decentralized Plug and Play Control for Direct Current Microgrids(Ieee-Inst Electrical Electronics Engineers Inc, 2021) Soliman, Hisham M.; Bayoumi, Ehab H. E.; El-Sheikhi, Farag Ali; Ibrahim, Amr M.Recently the integration of renewable energy resources to direct-current microgrids has become a hot research topic. The voltage stability problem is of paramount importance when the system is subject to external disturbances, parameters uncertainties, and plug-and-play regimes. This paper introduces a novel decentralized voltage tracking for a direct-current islanded microgrid. It consists of numerous Distributed Generation units. The decentralized controller of each distributed generator adjusts the voltage at the point of common coupling to track the desired reference. The proposed control copes with the plug-and-play operation of the microgrid. This means that the possibility of connection/disconnection distributed generators without deteriorating the stability of the overall microgrid is done through the invariant ellipsoid set and the linear matrix inequality optimization. Another merit of the proposed control is that updating the rest of the controllers is not required when a distributed generator is plugged in or out. Moreover, the proposed decentralized controller just uses local states (information) of its distributed generator only. Many simulations and practical studies with different scenarios have been conducted in this paper to verify the performance of the proposed controllers. Comparison with the existing schemes is included.Öğe Invariant Set-Based DC Microgrid Decentralized Actuator Fault-Tolerant Control(Ieee-Inst Electrical Electronics Engineers Inc, 2023) Soliman, Hisham M.; Bayoumi, Ehab H. E.; El-Sheikhi, Farag Ali; Ahshan, Razzaqul; Nengroo, Sarvar Hussain; Lee, SangkeumFaults and system failure components are primarily two causes of unstable or deteriorating control performance of power system. In this study, we present a novel approach to the decentralized restoration of large DC microgrids using fault-tolerant control (FTC). The microgrid achieves decentralization by partitioning into several smaller grids. Each independent grid views the actions of the other grids as an external disturbance. The malfunction of the controller is represented in the input matrix as a norm-bounded uncertainty. The disturbance impact is diminished due to the proposed invariant-set approach. The proposed control can address simultaneous failures in actuators with random placement and degradation levels. In a passive FTC system, when the defect cannot be detected (or the fault may not have been clearly addressed), the proposed technique is utilized. After the fault has occurred, it can be viewed as an uncertainty in system dynamics. The controller that stabilizes the system is obtained by solving iteratively bilinear matrix inequalities as linear matrix inequalities. In addition, this study presents and discusses positive outcomes of applying this method to a system of six interconnected DC microgrids in the event of multiple fault types. The proposed control successfully stabilizes the severe case of simultaneous actuator faults.