Yazar "Balkaya, Can" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Direct Displacement Based Design of RDC Frame-Shear Wall Structures(İstanbul Gelişim Üniversitesi, 2021) Balkaya, Can; Etemadi, Ali; Genç, ÖznurA large part of Turkey's urban region is located in the seismic prone zone and in terms of population, the majority of densely populated cities are located close to near-fault regions. It is very important to determine the behaviors of structures against external forces after destructive earthquakes. Structural and non-structural damages that occur during the earthquake usually arise from lateral displacements occurring in the structural system. This is why, in recent years, the displacement-based design has become more important when compared to the force based design. In this study, the Direct Displacement Based Design method under earthquake forces are explained. The process steps of this method on a frame-wall structure are clarified. The dynamic behavior of a moment resistant structures and a combined system with shear walls are compared. The finite element method used to analysis of reinforced concrete building models. Some model with moderate and high vibration period is adopted for dynamic analysis. An arrangement of the shear walls is changed in story plan of models. The dynamic analysis has shown quite different response among the structural systems. The difference in dynamic behavior is coming from the interaction of dynamic response between shear walls and moment resistant frames. Furthermore, the important role of shear walls displacements in transferring lateral loads is clarified with numerical examples. The positive role of RC shear walls on the combined structures under earthquake forces has been emphasized.Öğe The role of masonry infills on the interstory drift demand of reinforced concrete frames(Elsevier Sci Ltd, 2024) Etemadi, Ali; Balkaya, CanMost frame buildings, especially those with shear -type moment resistance frames, are affected by masonry infill panels, which change the mechanical properties of whole systems in a big way. In turn, seismic performance varies depending on the infill panel and frame interactions. In conventional structural design practice, such interaction has been overlooked. This study looks at the range of local displacement demands in shear -type frames with and without infill panels. Generic frames are developed by tuning the story stiffness and mass to produce a reasonable period range between 0.2 and 2.0 s. The masonry infill panels are simulated through equivalent diagonal struts. A Bouc-Wen-based hysteretic model is applied to incorporate the post -yielding hysteresis degradations of both columns and masonry panels. The hysteresis loop control parameter values are also given for incorporating masonry infill properties. The correlation analysis between the strength and stiffness of RC frames and masonry infills is supplied as an instrument for calibrating the hysteretic model. In the collection of records, there are a lot of near -fault ground motions, which puts a lot of seismic demands on the buildings. The modification factors via regression analysis are proposed using over 1254 nonlinear response history analyses. This modification factor is figured out by looking at the difference between the mean drift spectrum for a set of generic frames that are both bare and filled. The nonlinear analysis shows that residual drift demands can be reduced in the case of panel effects that exist for masonry-infilled mid -rise RC shear -type frames.